primus.co.kr Business Forecasting 관련 PPT 레포트(report) . > primus3 | primus.co.kr report

Business Forecasting 관련 PPT 레포트(report) . > primus3

본문 바로가기

뒤로가기 primus3

Business Forecasting 관련 PPT 레포트(report) .

페이지 정보

작성일 19-01-04 19:45

본문




Download : Business Forecasting 관련 PPT 레포트 ..pptx








Business Forecasting 관련 PPT 레포트 . , Business Forecasting 관련 PPT 레포트 .경영경제레포트 , Business Forecasting 관련 PPT 레포트










Business,Forecasting,관련,PPT,레포트,경영경제,레포트


Download : Business Forecasting 관련 PPT 레포트 ..pptx( 91 )


Business Forecasting 관련 PPT 레포트 ._pptx_01_.gif Business Forecasting 관련 PPT 레포트 ._pptx_02_.gif Business Forecasting 관련 PPT 레포트 ._pptx_03_.gif Business Forecasting 관련 PPT 레포트 ._pptx_04_.gif Business Forecasting 관련 PPT 레포트 ._pptx_05_.gif Business Forecasting 관련 PPT 레포트 ._pptx_06_.gif
Business Forecasting 관련 PPT 레포트(report) .
설명
Business Forecasting 관련 PPT 레포트(report) .

순서
레포트/경영경제

_SLIDE_1_
1
Business Forecasting
경영학과

_SLIDE_2_
2
Continuous Random Variables:Continuous Probability Distributions
_SLIDE_3_
3
Probability density function (pdf)
- Unlike a discrete random variable, a continuous random
variable is one that can assume an uncountable number of
values.
- We cannot list the possible values because there is an
infinite number of them.
- Because there is an infinite number of values, the
probability of each individual value is virtually 0.
Thus, we can determine the probability of a range of values
only. For example, with a discrete random variable like
tossing a die, it is meaningful to talk about P(X=5), say.
In a continuous setting (e.g., with time as a random
variable), the probability the random variable of interest,
say task length, takes exactly 5 minutes is infinitesimally
small, hence P(X=5) = 0.
Introduction

_SLIDE_4_
4
Probability density function (pdf)
- A function f(x) is called a p…(省略) robability density function (over
the range a ≤ x ≤ b if it meets the following requirements:

(1) f(x) ≥ 0 for all x between a and b, and
(2) The total area under the curve between a and b is 1.0

Introduction

_SLIDE_5_
5
Uniform distribution
- A random variable X with a flat probability density function
between two points a and b, so that

is said to have a uniform distribution X U(a,b)

The cumulative distribution function, an expected value,
and a variance are:
Uniform Distribution

_SLIDE_6_
6
Uniform distribution
- Probability density function
Uniform Distribution

_SLIDE_7_
7
Uniform distribution
- Example
The amount of gasoline sold daily at a service station is
uniformly distributed with a minimum of 2,000 gallons and a
maximum of 5,000 gallons. Find the probability that daily
sales will fall between 2,500 and 3,000 gallons.
Algebraically: what is P(2,500 ≤ X ≤ 3,000)

Uniform Distribution

_SLIDE_8_
8
Unif
다.
전체 19,990건 1 페이지
해당자료의 저작권은 각 업로더에게 있습니다.

evga.co.kr 은 통신판매중개자이며 통신판매의 당사자가 아닙니다.
따라서 상품·거래정보 및 거래에 대하여 책임을 지지 않습니다.
Copyright © primus.co.kr. All rights reserved.
PC 버전으로 보기